DNA Computing Models.Springer. 2008. Domination in Permutation Graphs

J.Chithra ${ }^{1}$, S.P.Subbiah ${ }^{2}$, V.Swaminathan ${ }^{3}$
${ }^{1}$ Department of Mathematics, Lady Doak College, Madurai, India
${ }^{2}$ Department of Mathematics, M T N College Madurai, India
${ }^{3}$ Ramanujan Research Centre, SN College, Madurai, India E-mail: chithra.edwin@gmail.com

Abstract - If i, j belongs to a permutation on n symbols $\{1,2$, $\ldots, p\}$ and i is less than j then there is an edge between i and j in the permutation graph if i appears after j. (i. e) inverse of i is greater than the inverse of j. So the line of i crosses the line of j in the permutation. So there is a one to one correspondence between crossing of lines in the permutation and the edges of the corresponding permutation graph. In this paper we found the conditions for a permutation to realize paths and cycles and also derived the domination number of permutation graph through the permutation. AMS Subject Classification (2010): 05C35, 05C69, 20B30.

Key Words: Permutation Graphs, Domination Number of a Permutation

I. DOMINATION IN PERMUTATION GRAPHS

Introduction: Adin and Roichman [1] introduced the concept of permutation graphs and Peter Keevash, Po-Shen Loh and Benny Sudakov [2] identified some permutation graphs with maximum number of edges. Charles J Colbourn, Lorna K.Stewart [3] characterized the connected domination and Steiner Trees under the Permutation graphs. In this paper we give an algorithm to find a minimal dominating set and so a set of all MDS of a permutation graph from the corresponding permutation. We proved the conditions for a complete bipartition and complete tripartition of a permutation graph and not all the graphs are permutation graphs.

Definition 1.1: Let π be a permutation on p symbols \{ $\left.a_{1}, a_{2}, \ldots, a_{p}\right\}$ where image of a_{i} is a_{i}. Then the PERMUTATION GRAPH G_{π} is given by $\left(\mathrm{V}_{\pi}, \mathrm{E}_{\pi}\right)$ where $V_{\pi}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ and $a_{i} a_{j} \in E_{\pi}$, if $\quad\left(a_{i}-a_{j}\right)\left(\pi^{-1}\left(a_{i}\right)-\pi^{-1}\left(a_{j}\right)\right)<0$.

Definition 1.2: The element a_{i} is said to DOMINATE a_{j} if their lines cross each other in π. The set of collection of elements of π whose lines cross all the lines of the elements $a_{1}, a_{2}, \ldots, a_{p}$ in π is said to be a DOMINATING SET of π. $V=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ is always a dominating set.
Definition 1.3: The subset D of $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ is said to be a MINIMAL DOMINATING SET of π if $\mathrm{D}-\left\{a_{i}\right\}$ is not a dominating set of π for all $a_{j} \in D$.

Definition 1.4: The DOMINATION NUMBER of a permutation π is the minimum cardinality of a set in $\operatorname{MDS}(\pi)$ and is denoted by $\gamma(\pi)$.

Definition 1.5: A graph G is a PERMUTATION GRAPH if there exists a permutation π such that $\mathrm{G}_{\pi}=\mathrm{G}$. (i.e) a graph is a permutation graph if it is realizable by a permutation π. Otherwise it is not a permutation graph.

Definition 1.6: The NEIGHBOURHOOD of a_{i} in π is a set of all elements of π whose lines cross the line of a_{i} and is denoted by $\mathrm{N}_{\pi}\left(\mathrm{a}_{\mathrm{i}}\right)$.

Theorem 1.7: The domination number of a permutation π is equal to the domination number of the corresponding permutation graph realized by π. (i.e) $\gamma(\pi)=\gamma\left(\mathrm{G}_{\pi}\right)$, the minimum cardinality of a minimal dominating set of G_{π}.
Proof: Let π be a permutation on a finite set $\mathrm{A}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right.$ $\}$ and let G_{π} be the permutation graph, where $\mathrm{V}_{\pi}=\mathrm{A}$. Choose $a_{i} \& a_{j}$ in π whose lines cross each other. Then $\left\{a_{i}\right\}$ or $\left\{a_{j}\right\}$ will be in a dominating set, say D . Let $\mathrm{D}=\left\{a_{i}\right\}$ and let $\mathrm{S}=\mathrm{N}_{\pi}\left(a_{i}\right)$. Let $V_{1}=V-(D \cup S)$. If $V_{1}=\Phi$, then D is a minimal dominating set of π. If not, either V_{1} has elements whose lines cross the lines of π or has elements without crossing lines in π (trivial crossing). If all the elements of V_{1} has trivial crossing then $D_{1}=D \cup V_{1}$ is a minimal dominating set. If V_{1} has elements whose lines cross the lines of elements of π then choose $a_{r} \in$ V_{1} whose line crosses the line of a_{t} in π. Then $D_{1}=D \cup\left\{a_{r}\right\}$ or $D_{1}=D \cup\left\{a_{t}\right\}$. Let $D_{1}=D \cup\left\{a_{r}\right\}$. Then $S_{1}=S \cup N_{\pi}\left(a_{r}\right)$, where $a_{t} \in N_{\pi}\left(a_{r}\right)$. Then $V_{2}=V_{1^{-}}\left(D_{1} \cup S_{1}\right)$. If $V_{2}=\Phi$ then D_{1} is the minimal dominating set of π. If not, either V_{2} has elements whose lines cross the lines of elements of π, or has elements which do not cross any of the lines of elements of π. As discussed earlier we arrive at a minimum dominating set D_{2} $=D_{1} \cup V_{2}$ or $D_{2}=D_{1} \cup\left\{a_{s}\right\}$ and $S_{2}=S_{1} \cup N_{\pi}\left(a_{s}\right)$, where $a_{r} \in$ $\mathrm{N}_{\pi}\left(\mathrm{a}_{\mathrm{s}}\right)$. On continuing this process, after a finite stage k , we arrive at either $\mathrm{V}_{\mathrm{k}}=\Phi$ or V_{k} consisting of elements whose lines do not cross any of the lines of the elements of π. In both cases $D_{k} \cup V_{k}$ is a minimal dominating set of π. Thus all the minimal dominating sets $\operatorname{MDS}(\pi)$ can be established. The minimum cardinality of the set in $\operatorname{MDS}(\pi)$ is the domination number of π which is $\gamma(\pi)$. There exists a 1-1 correspondence between the crossing of lines of elements of π and the edges of G_{π}. Hence $\gamma(\pi)=\gamma\left(\mathrm{G}_{\pi}\right)$. .

II.DOMINATION IN COMPLETE BIPARTITE AND TRIPARTITE GRAPHS

Lemma 2.1: Let π be a permutation on p symbols $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ such that $a_{1}<a_{2}<\ldots . .<a_{p}$. Then the permutation graph is a
complete graph if and only if the images of the elements are such that $a^{\prime}{ }_{p}<a^{\prime}{ }_{p-1}<\ldots .<a_{1}{ }^{\prime}$.

Proof: Let $\mathrm{V}_{\pi}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ such that $a_{1}<a_{2}<\ldots . .<a_{p}$ and $a^{\prime}{ }_{p}<a^{\prime}{ }_{p-1}<\ldots<a_{1}{ }^{\prime}$. Let $\mathrm{i}<\mathrm{j} . \mathrm{i}, \mathrm{j}=1,2, \ldots, \mathrm{p}, \mathrm{i} \neq \mathrm{j} . \quad$ Then $a_{i}<a_{j}$. Hence by hypothesis the images are in the reverse order. Therefore $\left(a_{i}-a_{j}\right)\left(\pi^{-1}\left(a_{i}\right)-\pi^{-1}\left(a_{j}\right)\right)<0$ and so $a_{i} a_{j} \in E_{\pi}$. This is true if $\mathrm{j}<\mathrm{i}$ also. Hence $a_{i} a_{j} \in E_{\pi}, \mathrm{i} \neq \mathrm{j}$. So G_{π} is a complete graph. Conversely suppose that G_{π} is a complete graph. Let $\mathrm{G}_{\pi}=\mathrm{K}_{\mathrm{p}}$. Let $\mathrm{i}<\mathrm{j}$. Hence $a_{i}<a_{j}$ and $\pi^{-1}\left(a_{i}\right)=k$ and $\pi^{-1}\left(a_{j}\right)=k^{\prime}$. Then $a_{i}<a_{j}$ and as $a_{i} a_{j} \in E_{\pi}$ for all $\mathrm{i} \neq \mathrm{j} \quad$ and so $\pi^{-1}\left(a_{i}\right)-\pi^{-1}\left(a_{j}\right)>0$. (i.e) $\mathrm{k}>\mathrm{k}$.

Therefore $\pi^{-1}\left(a_{p}\right)<\pi^{-1}\left(a_{p-1}\right)<\ldots<\pi^{-1}\left(a_{1}\right)$
(i.e) $a_{p}^{\prime}<a_{p-1}^{\prime}<\ldots<a_{1}^{\prime}$

Theorem 2.2: Let π be a permutation on p symbols $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ such that $a_{1}<a_{2}<\ldots . .<a_{p}$. Then the permutation graph is a complete graph if and only if the images of the elements are such that $a_{p}^{\prime}<a^{\prime}{ }_{p-1}<\ldots<a_{1}{ }^{\prime}$. Then the domination number of π is 1 .

Proof: Let π be a permutation on p symbols $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ such that $a_{1}<a_{2}<\ldots . .<a_{p}$ and $a_{p}^{\prime}<a_{p-1}^{\prime}<\ldots .<a_{1}{ }^{\prime}$. Then by Lemma 2.1, G_{π} corresponds to the complete graph K_{p}. Equivalently every line of an element in π crosses all the remaining lines of the elements of π. Therefore the domination number of π is 1 .

Lemma 2.3: Let π be a permutation on $\mathrm{S}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ such that $a_{1}<a_{2}<\ldots .<a_{p}$ and $a_{k}^{\prime}<a^{\prime}{ }_{k+1}<\ldots . .<a_{p}^{\prime}<a_{1}^{\prime}<a_{2}^{\prime}$ $<\ldots . .<a_{k-1}^{\prime}$ where $\mathrm{k}=2,3, \ldots, \mathrm{p}$. Then G_{π} is a complete bipartite graph.

Proof: Let $\mathrm{V}_{\pi}=\mathrm{S}, V_{1}=\left\{a_{k}, a_{k+1}, \ldots, a_{p}\right\} \quad \& V_{2}=\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$
$=2,3, \ldots$ p. Let $a_{i} \in V_{1}$ and $a_{j} \in V_{2}$. (i.e) $a_{j}<a_{i}$. Then by hypothesis $a_{i}^{\prime}<a_{j}^{\prime}$. Therefore $\pi^{-1}\left(a_{i}\right)<\pi^{-1}\left(a_{j}\right)$ which implies $\left(a_{i}-a_{j}\right)\left(\pi^{-1}\left(a_{i}\right)-\pi^{-1}\left(a_{j}\right)\right)<0$. Hence $a_{i} a_{j} \in E_{\pi}, \mathrm{k} \leq \mathrm{i} \leq \mathrm{p}$, $1 \leq \mathrm{j} \leq \mathrm{k}-1$. Let $a_{r}, a_{s} \in V_{1}$. Assume that $a_{r}<a_{s}$. Then by the hypothesis, $\pi^{-1}\left(a_{r}\right)<\pi^{-1}\left(a_{s}\right)$ which implies that $\left(a_{r}-a_{s}\right)\left(\pi^{-1}\left(a_{r}\right)-\pi^{-1}\left(a_{s}\right)\right)>0$. Hence $a_{r} a_{s} \notin E_{\pi}$. It is also true if $a_{r}>a_{s}, a_{r} a_{s} \notin E_{\pi}$. Therefore there is no edge among points of V_{1}. Similarly it can be seen that there is no edge among points of V_{2}. Hence G_{π} is a complete bipartite graph.

Theorem 2.4: Let π be a permutation on $\mathrm{S}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ such that $a_{1}<a_{2}<\ldots . .<a_{p}$ and $a_{k}^{\prime}<a^{\prime}{ }_{k+1}<\ldots . .<a_{p}^{\prime}<a_{1}^{\prime}<a_{2}^{\prime}$
$<\ldots . . .<a_{k-1}^{\prime}$ where $\mathrm{k}=2,3, \ldots$. Then $\gamma(\pi)=1$, if $\mathrm{k}=2$ or p , and $\gamma(\pi)=2$ if $\mathrm{k}=3,4, \ldots, \mathrm{p}-1$.

Proof: π is a permutation on $\mathrm{S}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ such that $a_{1}<a_{2}<\ldots . .<a_{p}$ and $a_{k}^{\prime}<a^{\prime}{ }_{k+1}<\ldots . .<a_{p}^{\prime}<a_{1}^{\prime}<a_{2}^{\prime}<\ldots . .<a_{k-1}^{\prime}$ where $\mathrm{k}=2,3, \ldots \mathrm{p}$. Then by Lemma 2.3, G_{π} is a complete bipartite graph. If $k=2$ and $k=p$ then $G_{\pi}=K_{1, p-1}$ and hence $\gamma(\pi)=1$. If $\mathrm{k}=3,4, \ldots, \mathrm{p}-1$, by Lemma 2.3 $\gamma(\pi)=2$.

Lemma 2.5:
Let π be a permutation on $\mathrm{S}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ where p is odd such that $a_{1}<a_{2}<\ldots . .<a_{p}$ and $a_{\frac{p+1}{2}+k+1}^{\prime}<a_{\frac{p+1}{2}+k+2}^{\prime}<\ldots . .<a_{p}^{\prime}$ $<a^{\prime}{ }_{\frac{p+1}{2}-k}<a_{{ }_{\frac{p+1}{2}(k-1)}}<\ldots . .<a_{{ }_{p+1}^{2}}^{\prime}<\quad a^{\prime}{ }_{\frac{p+1}{2}+1}<a_{\frac{p_{2+1}^{2}+2}{}}<\ldots . .<a_{\frac{p+1}{2}+k}^{\prime}<$ $a_{1}^{\prime}<a_{2}^{\prime}<\ldots . .<a_{\frac{p+1}{2}-(k+1)}^{\prime}$ where $\mathrm{k}=0,1,2, \ldots,(\mathrm{p}-3) / 2$. Then G_{π} is a complete tripartite graph.

Proof: Let $\mathrm{V}_{\pi}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$. Let $\mathrm{V}_{1}=\left\{a_{1}, a_{2}, \ldots ., a_{\frac{p+1}{2}-(k+1)}\right\}$; $\mathrm{V}_{2}=\left\{a_{\frac{p+1}{2} k}, a_{\left.\frac{p+1}{2}-k-1\right)}, \ldots a_{\frac{p+1}{2}}, a_{\frac{p+1}{2}+1}, \ldots a_{\frac{p+1}{2}+k}\right\}$ andV $\mathrm{V}_{3}=\left\{a_{\frac{p+1}{2}+k+1}, a_{\frac{p+1}{2}+k+2}, \ldots a_{p}\right\}$ where $\mathrm{k}=0,1,2,3, \ldots,(\mathrm{p}-3) / 2$. Let $a_{i} \in V_{1}$ and $a_{j} \in V_{2}$. Then $a_{i}<a_{j}$. Then by hypothesis $a_{j}^{\prime}<a_{i}^{\prime}$. (i.e) $\pi^{-1}\left(a_{j}\right)<\pi^{-1}\left(a_{i}\right)$. Therefore $\quad\left(a_{i}-a_{j}\right)\left(\pi^{-1}\left(a_{i}\right)-\pi^{-1}\left(a_{j}\right)\right)<0$. Hence $a_{i} a_{j} \in E_{\pi}$, $\forall i=1,2, \ldots, \frac{p+1}{2}-(k+1)$ and $j=\frac{p+1}{2}-k \frac{p+1}{2}-(k-1), \ldots, \frac{p+1}{2}, \ldots, \frac{p+1}{2}+k$ where $\mathrm{k}=$ $0,1,2, \ldots,(p-3) / 2$. Hence every vertex in V_{1} is adjacent to all the vertices of V_{2}. Similarly it can be proved that every vertex in V_{1} is adjacent to all the vertices of V_{3} and every vertex in V_{2} is adjacent to all the vertices of V_{3}. Now let us prove that there exists no edge among vertices of V_{1}. Let $a_{r}, a_{s} \in V_{1}$. Assume that $a_{r}<a_{s}$. Then by the hypothesis, $\pi^{-1}\left(a_{r}\right)<\pi^{-1}\left(a_{s}\right)$ which implies that $\left(a_{r}-a_{s}\right)\left(\pi^{-1}\left(a_{r}\right)-\pi^{-1}\left(a_{s}\right)\right)>0$. Hence $a_{r} a_{s} \notin E_{\pi}$.It is also true if $a_{r}>a_{s}, a_{r} a_{s} \notin E_{\pi}$. Therefore there is no edge among vertices of V_{1}. Similarly it can be seen that there is no edge among vertices of V_{2} and among vertices of V_{3}. Hence G_{π} is a complete tripartite graph.

Lemma 2.6: Let π be a permutation on $\mathrm{S}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ where p is even such that $a_{1}<a_{2}<\ldots<a_{p}$ and $a_{\frac{p}{2}+k+1}^{\prime}<a_{\frac{p}{2}+k+2}^{\prime}<\ldots . .<a_{p}^{\prime}$ $<a_{\frac{p}{2}-(k-1)}^{\prime}<a_{\frac{p}{2}-(k-2)}^{\prime}<\ldots<a_{\frac{p}{2}}^{\prime}<a_{\frac{p}{2}+1}^{\prime}<\ldots, \ldots, \ldots a_{\frac{p_{p}+k}{\prime}}^{\prime}<a^{\prime}{ }_{1}<a^{\prime}{ }_{2}<\ldots \ldots<a^{\prime}{ }_{\frac{p}{2}-k}$ where $\mathrm{k}=1,2, \ldots,(\mathrm{p} / 2)-1$. Then G_{π} is a complete tripartite graph. Proof: Let $\mathrm{V}_{\pi}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$. Let $\mathrm{V}_{1}=\left\{a_{1}, a_{2}, \ldots . ., a_{\frac{p}{2}-k}\right\} ; \mathrm{V}_{2}=$ $\left\{, a_{\frac{p}{2}-(k-1)}, \ldots a_{\frac{p}{2}}, a_{\frac{p}{2}+1}, \ldots, a_{\frac{p}{2}+k+k}\right\}$ and $\mathrm{V}_{3}=\left\{a_{\frac{p}{2}+(k+1)}, a_{\frac{p}{2}+(k+2)}, \ldots, a_{p}\right\}$ where k $=1,2,3, \ldots,(\mathrm{p} / 2)-1$. Let $a_{i} \in V_{1}$ and $a_{j} \in V_{2}$. Then $a_{i}<a_{j}$. By hypothesis $\quad a^{\prime}{ }_{j}<a^{\prime}{ }_{i}$. (i.e) $\pi^{-1}\left(a_{j}\right)<\pi^{-1}\left(a_{i}\right)$ which implies $\left(a_{i}-a_{j}\right)\left(\pi^{-1}\left(a_{i}\right)-\pi^{-1}\left(a_{j}\right)\right)<0$. Hence $a_{i} a_{j} \in E_{\pi}, \forall i=1,2, \ldots ., \frac{p}{2}-k$
and $\quad j=\frac{p}{2}-(k-1), \ldots \frac{p}{2}, \ldots \frac{p}{2}+k$ where $\mathrm{k}=1,2,3, \ldots,(\mathrm{p} / 2)-1$. Hence every vertex of V_{1} is adjacent to all the vertices of V_{2}. Similarly it can be proved that every vertex of V_{1} is adjacent to all the vertices of V_{3} as well as between vertices of V_{2} and V_{3}. Now let us prove that there exists no edge among vertices of V_{1}. Let $a_{r}, a_{s} \in V_{1}$. Assume that $a_{r}<a_{s}$. Then by the hypothesis, $\pi^{-1}\left(a_{r}\right)<\pi^{-1}\left(a_{s}\right)$ which implies that $\left(a_{r}-a_{s}\right)\left(\pi^{-1}\left(a_{r}\right)-\pi^{-1}\left(a_{s}\right)\right)>0$. Hence $a_{r} a_{s} \notin E_{\pi}$. It is also true if $a_{r}>a_{s}, a_{r} a_{s} \notin E_{\pi}$. Therefore there is no edge among vertices of V_{1}. Similarly it can be seen that there is no edge among vertices of V_{2} and among the vertices of V_{3}. Hence G_{π} is a complete tripartite graph.
Remark 2.7: Let π be a permutation on $\mathrm{S}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\} \quad$ such that $a_{1}<a_{2}<\ldots<a_{p}$. If π is expressed as a product of disjoint cycles such as $\left(a_{1} a_{i+k}\right)\left(a_{2} a_{i+k+1}\right)\left(a_{3} a_{i+k+2}\right) \ldots\left(a_{i-k} a_{p}\right)$ where $i=\frac{p+1}{2}+1, k=1,2, \ldots, \frac{p-1}{2}$ for odd p and $i=\frac{p+2}{2}, k=1,2, \ldots, \frac{p-2}{2}$ for even p, then G_{π} is a complete tripartite graph by Lemma 2.5 and Lemma 2.6.

Remark 2.8: The permutations following the pattern described in the Remark 2.7 always realizes a connected graph. Hence $1 \leq \gamma(\pi) \leq \mathrm{p} / 2$

Remark 2.9: The number of distinct permutations on p symbols yielding complete tripartite graphs is $\mathrm{k}=(\mathrm{p}-1) / 2$ for odd p and $\mathrm{k}=(\mathrm{p}-2) / 2$ for even p

Theorem 2.10: Let π be a permutation on $\mathrm{S}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ such that $a_{1}<a_{2}<\ldots<a_{p}$. If π is expressed as a product of disjoint cycles such as $\left(a_{1} a_{i+k}\right)\left(a_{2} a_{i+k+1}\right)\left(a_{3} a_{i+k+2}\right) \quad \ldots\left(a_{i-k} a_{p}\right) \quad$ where $i=\frac{p+1}{2}+1, k=1,2, \ldots, \frac{p-1}{2}$ for odd p and $i=\frac{p+2}{2}, k=1,2, \ldots, \frac{p-2}{2}$ for even p , then (i) $\gamma(\pi)=1$ for $\mathrm{k}=1$ and odd p ; (ii) $\gamma(\pi)=1$ if $\pi=\left(\mathrm{a}_{1} \mathrm{a}_{\mathrm{p}}\right)$; (iii) $\gamma(\pi)=2$, otherwise.

Proof: Let π be a permutation on $\mathrm{S}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ such that $a_{1}<a_{2}<\ldots<a_{p}$. If π is expressed as a product of disjoint cycles such as $\left(a_{1} a_{i+k}\right)\left(a_{2} a_{i+k+1}\right)\left(a_{3} a_{i+k+2}\right) \ldots\left(a_{i-k} a_{p}\right) \quad$ where $i=\frac{p+1}{2}+1, k=1,2, \ldots, \frac{p-1}{2}$ for odd p and $i=\frac{p+2}{2}, k=1,2, \ldots, \frac{p-2}{2}$ for even p, then π follows the pattern as described in Lemma 2.5 and Lemma 2.6 by the Remark 2.7. Hence (i) $\gamma(\pi)=1$ for $\mathrm{k}=1$ and odd p ; (ii) $\gamma(\pi)=1$ if $\pi=$ $\left(\mathrm{a}_{1} \mathrm{a}_{\mathrm{p}}\right)$; (iii) $\gamma(\pi)=2$, otherwise.

III.REALIZABLE PERMUTATION GRAPHS

Lemma 3.1:

Let π be a permutation on $\mathrm{S}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\} \quad$ such that $a_{1}<a_{2}<\ldots<a_{p}$. and let (A) $a_{i}^{\prime}=a_{i-2}$ odd $\mathrm{i}, 1<\mathrm{i}<\mathrm{p}$, and $a_{j}^{\prime}=a_{j+2}$, even $\mathrm{j}, 1 \leq \mathrm{j}<\mathrm{p}-1, a_{1}^{\prime}=a_{2}$ and $a_{p-1}^{\prime}=a_{p} \quad$ for odd
p and $a_{p}^{\prime}=a_{p-1}$ for even p (or) (B) $a_{i}^{\prime}=a_{i+2}, \quad$ odd $\mathrm{i}, 1<$ p , and $a_{j}^{\prime}=a_{j-2}$, even $\mathrm{j}, 2<\mathrm{j} \leq \mathrm{p}, \mathrm{a}^{\prime}{ }_{2}=\mathrm{a}_{1}$ and $a_{p}^{\prime}=a_{p-1} \quad$ for odd p and $a_{p-1}^{\prime}=a_{p}$ for even p . Then G_{π} is a path with p vertices.

Proof:

(A) Given $\quad a_{i}^{\prime}=a_{i-2}$ odd $\mathrm{i}, 1<\mathrm{i}<\mathrm{p}$, and $a_{j}^{\prime}=a_{j+2}, \quad$ even $\mathrm{j}, 1 \leq$ $\mathrm{j}<\mathrm{p}-1, a_{1}^{\prime}=a_{2}$ and $a_{p-1}^{\prime}=a_{p}$ for odd p and $a_{p}^{\prime}=a_{p-1} \quad$ for even p. Hence $\pi^{-1}\left(a_{2}\right)=a_{1} ; \pi^{-1}\left(a_{j+2}\right)=a_{j} ; 1 \leq \mathrm{j}<\mathrm{p}-1 ; \quad \pi^{-1}\left(a_{p}\right)=a_{p-1}$ and $\pi^{-1}\left(a_{i-2}\right)=a_{i}$ odd $\mathrm{i}, 1<\mathrm{i}<\mathrm{p}$.

Case 1: Let m be odd.
Claim1: $a_{m} a_{m+1}, a_{m} a_{m+3} \in E_{\pi}, \quad 1 \leq \mathrm{m}<\mathrm{p}$. We know $a_{m}-a_{m+1}<0 \cdot \pi^{-1}\left(a_{m}\right)=a_{m+2}$ and $\pi^{-1}\left(a_{m+1}\right)=a_{n-1}$. Therefore $\pi^{-1}\left(a_{m}\right)-\pi^{-1}\left(a_{n+1}\right)=a_{m+2}-a_{m-1}>0$ and hence $\left(a_{m}-a_{m+1}\right)($ $\left.\pi^{-1}\left(a_{m}\right)-\pi^{-1}\left(a_{m+1}\right)\right)<0$. So $a_{m} a_{m+1} \in E_{\pi}$. Similarly $a_{m}-a_{m+3}<0$ and $\quad \pi^{-1}\left(a_{m}\right)-\pi^{-1}\left(a_{m+3}\right)=a_{m+2}-a_{m+1}>0$. Hence $a_{m} a_{m+3} \in E_{\pi}$, $1 \leq \mathrm{m}<\mathrm{p}$.
Claim 2: $a_{m} a_{m+k} \notin E_{\pi}$ where $\mathrm{k}=4,5,6, \ldots, \mathrm{p}-\mathrm{m}$. Here $a_{m}-a_{m+k}<0$, $\pi^{-1}\left(a_{m}\right)=a_{m+2}$ and $\pi^{-1}\left(a_{m+k}\right)=a_{m+k+2}$ for even k and $\pi^{-1}\left(a_{m+k}\right)=a_{m+k-2}$ for odd k. Therefore $\left(a_{m}-a_{m+k}\right)\left(\pi^{-1}\left(a_{m}\right)-\pi^{-1}\left(a_{m+k}\right)\right)<0$. Hence $a_{m} a_{m+k} \notin E_{\pi}$ where $\mathrm{k}=4,5,6, \ldots, \mathrm{p}-\mathrm{m}$.
Case 2: Let m be even.
$\mathrm{m}-1$ and $\mathrm{m}-3$ are odd and similar proof can be given to show that $a_{m} a_{m-1}, a_{m} a_{m-3} \in E_{\pi}, 1<\mathrm{m} \leq \mathrm{p}-1$ and $a_{m} a_{m+k} \notin E_{\pi}$ where $1<\mathrm{m}<\mathrm{p}, \mathrm{k}=1,2,3, \ldots, \mathrm{p}-\mathrm{m}$.
Case 3: Let us prove that $a_{p} a_{p-2} \in E_{\pi}$, and $a_{p} a_{p-i} \notin E_{\pi}$, where $\mathrm{i}=1,3,4, \ldots, \mathrm{p}-1 ; \quad a_{1} a_{2} \in E_{\pi}$ and $a_{2} a_{n} \notin E_{\pi} 1<\mathrm{n} \leq \mathrm{p}$. $a_{p}-a_{p-2}>0, \quad \pi^{-1}\left(a_{p}\right)-\pi^{-1}\left(a_{p-2}\right)=a_{p-1}-a_{p}<0$. Therefore $\left(a_{p}-a_{p-2}\right)\left(\pi^{-1}\left(a_{p}\right)-\pi^{-1}\left(a_{p-2}\right)\right)<0$. Hence $a_{p} a_{p-2} \in E_{\pi}$. We know that $a_{p}-a_{p-i}>0, \mathrm{i}=1,3,4, \ldots, \mathrm{p}-1 . \quad \pi^{-1}\left(a_{p}\right)-\pi^{-1}\left(a_{p-i}\right)=a_{p-1}-\quad a_{p-k}>0$, $\mathrm{k}=2,3, \ldots, \mathrm{p}-1$. Hence $a_{p} a_{p-i} \notin E_{\pi}, \mathrm{i}=1,3,4, \ldots, \mathrm{p}-1$. Similarly it can be proved that $a_{1} a_{2} \in E_{\pi}$ and $a_{2} a_{n} \notin E_{\pi}$. Hence the permutation π given by $a_{i}^{\prime}=a_{i-2}$ odd $\mathrm{i}, 1<\mathrm{i}<\mathrm{p}$, and $a_{j}^{\prime}=a_{j+2}$, even j , $1 \leq \mathrm{j}<\mathrm{p}-1, a_{1}^{\prime}=a_{2}$ and $a_{p-1}^{\prime}=a_{p}$ for odd p and $a_{p}^{\prime}=a_{p-1}$ for even p realizes a path $P_{p_{1}}=\left\{a_{2}, a_{1}, a_{4}, a_{3}, \ldots a_{p}, a_{p-2}\right\}$. By the same argument as above it can be proved that π realizes the path $P_{p_{1}}=\left\{a_{2}, a_{1}, a_{4}, a_{3}, \ldots a_{p}, a_{p-1}\right\}$ for even p .
(B) Similar proof can be set for the pattern given by π $a_{i}^{\prime}=a_{i+2}$, odd $\mathrm{i}, 1 \leq \mathrm{i}<\mathrm{p}$, and $a_{j}^{\prime}=a_{j-2}$, even $\mathrm{j}, 2<\mathrm{j} \leq \mathrm{p}, \mathrm{a}^{\prime}{ }_{2}=\mathrm{a}_{1}$ and $a_{p}^{\prime}=a_{p-1}$ for odd p and $a_{p-1}^{\prime}=a_{p}$ for even p . This pattern realizes the path $P_{p_{1}}=\left\{a_{1}, a_{3}, a_{2}, a_{5}, \ldots a_{p}, a_{p-1}\right\}$ for odd p and $P_{p_{1}}=\left\{a_{1}, a_{3}, a_{2}, a_{5}, \ldots a_{p-1}, a_{p-2}, a_{p}\right\}$ for even p .

Theorem 3.2: Let π be a permutation on $\mathrm{S}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ such that $a_{1}<a_{2}<\ldots<a_{p}$. and let (A) $a_{i}^{\prime}=a_{i-2}$ odd $\mathrm{i}, 1<\mathrm{i}<\mathrm{p}$, and $\quad a_{j}^{\prime}=a_{j+2}$, even $\mathrm{j}, 1 \leq \mathrm{j}<\mathrm{p}-1, a_{1}^{\prime}=a_{2}$ and $a_{p-1}^{\prime}=a_{p}$
for odd p and $a_{p}^{\prime}=a_{p-1}$ for even p (or) (B) $a_{i}^{\prime}=a_{i+2}$, odd i , $1 \leq \mathrm{i}<\mathrm{p}$, and $a_{j}^{\prime}=a_{j-2}$, even $\mathrm{j}, 2<\mathrm{j} \leq \mathrm{p}, \mathrm{a}^{\prime}{ }_{2}=\mathrm{a}_{1}$ and $a_{p}^{\prime}=a_{p-1}$ for odd p and $a_{p-1}^{\prime}=a_{p}$ for even p . Then $\gamma(\pi)=\lceil p / 3\rceil$. Proof: Let π be a permutation on $\mathrm{S}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\} \quad$ such that $a_{1}<a_{2}<\ldots<a_{p}$. and let (A) $a_{i}^{\prime}=a_{i-2}$ odd $\mathrm{i}, 1<\mathrm{i}<\mathrm{p}$, and $a_{j}^{\prime}=a_{j+2}$, even $\mathrm{j}, 1 \leq \mathrm{j}<\mathrm{p}-1, a_{1}^{\prime}=a_{2}$ and $a_{p-1}^{\prime}=a_{p} \quad$ for odd p and $a_{p}^{\prime}=a_{p-1}$ for even p (or) (B) $a_{i}^{\prime}=a_{i+2}$, odd $\mathrm{i}, \quad 1 \leq \mathrm{i}<$ p , and $a_{j}^{\prime}=a_{j-2}$, even $\mathrm{j}, 2<\mathrm{j} \leq \mathrm{p}, \mathrm{a}^{\prime}{ }_{2}=\mathrm{a}_{1}$ and $a_{p}^{\prime}=a_{p-1} \quad$ for odd p and $a_{p-1}^{\prime}=a_{p}$ for even p . Then by Lemma 3, G_{π} is a path with p vertices and hence $\gamma(\pi)=\lceil p / 3\rceil$.

Theorem 3.3: C_{n}, is not a permutation graph for any $n \geq 5$
Proof: When $\mathrm{n}=3$, according to Lemma $2.1 \mathrm{C}_{3}$ is a permutation graph. When $n=4$ then by Lemma 2.3, C_{4} is also a permutation graph. The permutations mentioned in the above theorem realize the path with p vertices. The vertices a_{2} and a_{p} are adjacent to exactly one vertex each and other vertices are of degree 2 in case A and the vertices a_{1} and a_{p-1} are adjacent to exactly one vertex each and other vertices are of degree 2 in case B. Therefore if a permutation has to realize a cycle, then the vertices a_{2} and a_{p} in Case A, \quad or a_{1} and a_{p-1} in Case B must be of degree two along with the other vertices with degree two, which is not possible by the above theorem. Hence $C_{n}, n \geq 5$ are not permutation graphs.

REFERENCES

[1] Peter Keevosh, Po-Shen Loh and Benny Sudakov, "Bounding the number of edges in a Permutation Graph", The electronic Journal of Combinatorics 13, pp 1-9, 2006.
[2] R.Adin and Y.Roichman, On Degrees in the Hasse Diagram of the Strong Bruhat Order, Seminaire Lotharingien d Combinatoire 53 (2006), B53g.
[3] Charles J. Colbourn , Lorna K.Stewart "Permutation Graphs: Connected Domination and Steiner Trees", Research Report CS-85-02, Canada, 1985.
[4] Frank Harary, Graph Theory, Narosa Publishing House, Calcutta, pp. 2001.
[5] Teresa W.Haynes, Stephen T. Hedetneimi, PeterJ.Slater, Fundamentals of Domination in Graphs, in Graphs, Marcel Dekker,INC.,New York,pp.1-106, 1998.
[6] Ryuhei Uehara, Gabriel Valiente, Linear structure of Bipartite Permutation Graphs and the Longest Path Problem, 2006.

