DNA Computing Models.Springer. 2008. Domination in Permutation Graphs

J.Chithra¹, S.P.Subbiah², V.Swaminathan³ ¹Department of Mathematics, Lady Doak College, Madurai, India ²Department of Mathematics, M T N College Madurai, India ³Ramanujan Research Centre, SN College, Madurai, India E-mail: chithra.edwin@gmail.com

Abstract - If i, j belongs to a permutation on n symbols {1, 2, ..., p} and i is less than j then there is an edge between i and j in the permutation graph if i appears after j. (i. e) inverse of i is greater than the inverse of j. So the line of i crosses the line of j in the permutation. So there is a one to one correspondence between crossing of lines in the permutation and the edges of the corresponding permutation graph. In this paper we found the conditions for a permutation to realize paths and cycles and also derived the domination number of permutation graph through the permutation. AMS Subject Classification (2010): 05C35, 05C69, 20B30.

Key Words: Permutation Graphs, Domination Number of a Permutation

I. DOMINATION IN PERMUTATION GRAPHS

Introduction: Adin and Roichman [1] introduced the concept of permutation graphs and Peter Keevash, Po-Shen Loh and Benny Sudakov [2] identified some permutation graphs with maximum number of edges. Charles J Colbourn, Lorna K.Stewart [3] characterized the connected domination and Steiner Trees under the Permutation graphs. In this paper we give an algorithm to find a minimal dominating set and so a set of all MDS of a permutation graph from the corresponding permutation. We proved the conditions for a complete bipartition and complete tripartition of a permutation graph and not all the graphs are permutation graphs.

Definition 1.1: Let π be a permutation on p symbols { $a_1, a_2, ..., a_p$ }where image of a_i is a'_i . Then the PERMUTATION GRAPH G_{π} is given by (V_{π}, E_{π}) where $V_{\pi} = \{a_1, a_2, ..., a_p\}$ and $a_i a_j \in E_{\pi}$, if $(a_i - a_j)(\pi^{-1}(a_i) - \pi^{-1}(a_j)) < 0$.

Definition 1.2: The element a_i is said to DOMINATE a_j if their lines cross each other in π . The set of collection of elements of π whose lines cross all the lines of the elements $a_1, a_2, ..., a_p$ in π is said to be a DOMINATING SET of π . $V = \{a_1, a_2, ..., a_p\}$ is always a dominating set.

Definition 1.3: The subset D of { $a_1, a_2, ..., a_p$ } is said to be a MINIMAL DOMINATING SET of π if D-{ a_i } is not a dominating set of π for all $a_i \in D$.

Definition 1.4: The DOMINATION NUMBER of a permutation π is the minimum cardinality of a set in MDS(π) and is denoted by $\gamma(\pi)$.

Definition 1.5: A graph G is a PERMUTATION GRAPH if there exists a permutation π such that $G_{\pi} = G$. (i.e) a graph is a permutation graph if it is realizable by a permutation π . Otherwise it is not a permutation graph.

Definition 1.6: The NEIGHBOURHOOD of a_i in π is a set of all elements of π whose lines cross the line of a_i and is denoted by $N_{\pi}(a_i)$.

Theorem 1.7: The domination number of a permutation π is equal to the domination number of the corresponding permutation graph realized by π . (i.e) $\gamma(\pi)=\gamma(G_{\pi})$, the minimum cardinality of a minimal dominating set of G_{π} .

Proof: Let π be a permutation on a finite set A = { $a_1, a_2, ..., a_p$ } and let G_{π} be the permutation graph, where $V_{\pi} = A$. Choose $a_i \& a_i$ in π whose lines cross each other. Then $\{a_i\}$ or $\{a_i\}$ will be in a dominating set, say D. Let $D = \{a_i\}$ and let $S = N_{\pi}(a_i)$. Let $V_1 = V_1 (D \cup S)$. If $V_1 = \Phi$, then D is a minimal dominating set of π . If not, either V₁ has elements whose lines cross the lines of π or has elements without crossing lines in π (trivial crossing). If all the elements of V1 has trivial crossing then $D_1=D \cup V_1$ is a minimal dominating set. If V_1 has elements whose lines cross the lines of elements of π then choose $a_r \in$ V₁ whose line crosses the line of a_t in π . Then $D_1 = D \cup \{a_r\}$ or $D_1=D \cup \{a_t\}$. Let $D_1=D \cup \{a_r\}$. Then $S_1 = S \cup N_{\pi}(a_r)$, where $a_t \in N_{\pi}(a_r)$. Then $V_2 = V_1 - (D_1 \cup S_1)$. If $V_2 = \Phi$ then D_1 is the minimal dominating set of π . If not, either V₂ has elements whose lines cross the lines of elements of π , or has elements which do not cross any of the lines of elements of π . As discussed earlier we arrive at a minimum dominating set D_2 $= D_1 \cup V_2 \text{ or } D_2 = D_1 \cup \{a_s\} \text{ and } S_2 = S_1 \cup N_{\pi}(a_s), \text{ where } a_r \in \mathbb{C}$ $N_{\pi}(a_s)$. On continuing this process, after a finite stage k, we arrive at either $V_k = \Phi$ or V_k consisting of elements whose lines do not cross any of the lines of the elements of π . In both cases $D_k \cup V_k$ is a minimal dominating set of π . Thus all the minimal dominating sets $MDS(\pi)$ can be established. The minimum cardinality of the set in $MDS(\pi)$ is the domination number of π which is $\gamma(\pi)$. There exists a 1-1 correspondence between the crossing of lines of elements of π and the edges of G_{π} . Hence $\gamma(\pi) = \gamma(G_{\pi})$.

II. DOMINATION IN COMPLETE BIPARTITE AND TRIPARTITE GRAPHS

Lemma 2.1: Let π be a permutation on p symbols $\{a_1, a_2, ..., a_p\}$ such that $a_1 < a_2 < < a_p$. Then the permutation graph is a complete graph if and only if the images of the elements are such that $a'_{p} < a'_{p-1} < \dots < a_{1}'$.

Proof: Let $V_{\pi} = \{a_1, a_2, ..., a_p\}$ such that $a_1 < a_2 < < a_p$ and $a'_p < a'_{p-1} < < a_1'$. Let i < j. i, j = 1, 2, ..., p, $i \neq j$. Then $a_i < a_j$. Hence by hypothesis the images are in the reverse order. Therefore $(a_i - a_j)(\pi^{-1}(a_i) - \pi^{-1}(a_j)) < 0$. and so $a_i a_j \in E_{\pi}$. This is true if j < i also. Hence $a_i a_j \in E_{\pi}$, $i \neq j$. So G_{π} is a complete graph. Conversely suppose that G_{π} is a complete graph. Let $G_{\pi} = K_p$. Let i < j. Hence $a_i a_j \in E_{\pi}$ for all $i \neq j$ and $\pi^{-1}(a_j) = k'$. Then $a_i < a_j$ and as $a_i a_j \in E_{\pi}$ for all $i \neq j$ and so $\pi^{-1}(a_i) - \pi^{-1}(a_j) > 0$. (i.e) k > k'.

Therefore $\pi^{-1}(a_n) < \pi^{-1}(a_{n-1}) < ... < \pi^{-1}(a_1)$

(i.e) $a'_{p} < a'_{p-1} < \dots < a'_{1} \blacksquare$

Theorem 2.2: Let π be a permutation on p symbols $\{a_1, a_2, ..., a_p\}$ such that $a_1 < a_2 < < a_p$. Then the permutation graph is a complete graph if and only if the images of the elements are such that $a'_p < a'_{p-1} < ... < a_1'$. Then the domination number of π is 1.

Proof: Let π be a permutation on p symbols $\{a_1, a_2, ..., a_p\}$ such that $a_1 < a_2 < < a_p$ and $a'_p < a'_{p-1} < ... < a_1'$. Then by Lemma 2.1, G_{π} corresponds to the complete graph K_p . Equivalently every line of an element in π crosses all the remaining lines of the elements of π . Therefore the domination number of π is 1.

Lemma 2.3: Let π be a permutation on S= $\{a_1, a_2, ..., a_p\}$ such that $a_1 < a_2 < < a_p$ and $a'_k < a'_{k+1} < < a'_p < a'_1 < a'_2 < < a'_{k-1}$ where k = 2,3,...,p. Then G_{π} is a complete bipartite graph.

Proof: Let $V_{\pi} = S$, $V_1 = \{a_k, a_{k+1}, \dots, a_p\}$ & $V_2 = \{a_1, a_2, \dots, a_{k-1}\}$ k = 2,3,...p. Let $a_i \in V_1$ and $a_j \in V_2$. (i.e) $a_j < a_i$. Then by hypothesis $a'_i < a'_j$. Therefore $\pi^{-1}(a_i) < \pi^{-1}(a_j)$ which implies $(a_i - a_j)(\pi^{-1}(a_i) - \pi^{-1}(a_j)) < 0$. Hence $a_i a_j \in E_{\pi}$, $k \le i \le p$, $1 \le j \le k-1$. Let $a_r, a_s \in V_1$. Assume that $a_r < a_s$. Then by the hypothesis, $\pi^{-1}(a_r) < \pi^{-1}(a_s)$ which implies that $(a_r - a_s)(\pi^{-1}(a_r) - \pi^{-1}(a_s)) > 0$. Hence $a_r a_s \notin E_{\pi}$. It is also true if $a_r > a_s$, $a_r a_s \notin E_{\pi}$. Therefore there is no edge among points of V_1 . Similarly it can be seen that there is no edge among points of V_2 . Hence G_{π} is a complete bipartite graph.

Theorem 2.4: Let π be a permutation on $\mathbf{S} = \{a_1, a_2, \dots, a_p\}$ such that $a_1 < a_2 < \dots < a_p$ and $a'_k < a'_{k+1} < \dots < a'_p < a'_1 < a'_2$ <.....< a'_{k-1} where k = 2,3,...p. Then $\gamma(\pi)=1$, if k= 2 or p, and $\gamma(\pi)=2$ if k = 3,4,..., p-1.

Proof: π is a permutation on S= $\{a_1, a_2, ..., a_p\}$ such that $a_1 < a_2 < < a_p$ and $a'_k < a'_{k+1} < < a'_p < a'_1 < a'_2 < < a'_{k-1}$ where k = 2,3,...p. Then by Lemma 2.3, G_{π} is a complete bipartite graph. If k = 2 and k = p then $G_{\pi} = K_{1,p-1}$ and hence $\gamma(\pi) = 1$. If k = 3,4,...,p-1, by Lemma 2.3 $\gamma(\pi) = 2$.

Lemma 2.5:

Let π be a permutation on S= $\{a_1, a_2, ..., a_p\}$ where p is odd such that $a_1 < a_2 < < a_p$ and $a'_{\frac{p+1}{2}+k+1} < a'_{\frac{p+1}{2}+k+2} < < a'_p$ $< a'_{\frac{p+1}{2}-k} < a'_{\frac{p+1}{2}-(k-1)} < < a'_{\frac{p+1}{2}} < a'_{\frac{p+1}{2}+1} < a'_{\frac{p+1}{2}+2} < < a'_{\frac{p+1}{2}+k} <$

Proof: Let $V_{\pi} = \{a_1, a_2, ..., a_p\}$. Let $V_I = \{a_1, a_2, ..., a_{\frac{p+1}{2}-(k+1)}\}$; $\mathbf{V}_{2} = \{a_{\frac{p+1}{2}-k}, a_{\frac{p+1}{2}-(k-1)}, \dots, a_{\frac{p+1}{2}}, a_{\frac{p+1}{2}+k}, \dots, a_{\frac{p+1}{2}+k}\} \text{ and } \mathbf{V}_{3} = \{a_{\frac{p+1}{2}+k+1}, a_{\frac{p+1}{2}-(k+1)}, \dots, a_{p}\}$ where k = 0, 1, 2, 3, ..., (p-3)/2. Let $a_i \in V_1$ and $a_i \in V_2$. Then $a_i < a_i$. Then by hypothesis $a'_i < a'_i$. (i.e) $\pi^{-1}(a_i) < \pi^{-1}(a_i)$. Therefore $(a_i - a_i)(\pi^{-1}(a_i) - \pi^{-1}(a_i)) < 0$. Hence $a_i a_i \in E_{\pi}$, $\forall i=1,2,...,\frac{p+1}{2}-(k+1)$ and $j=\frac{p+1}{2}-k\frac{p+1}{2}-(k-1),...\frac{p+1}{2},...\frac{p+1}{2}+k$ where k = $0,1,2,\ldots,$ (p-3)/2. Hence every vertex in V₁ is adjacent to all the vertices of V_2 . Similarly it can be proved that every vertex in V_1 is adjacent to all the vertices of V_3 and every vertex in V_2 is adjacent to all the vertices of V_3 . Now let us prove that there exists no edge among vertices of V₁. Let $a_r, a_s \in V_1$. Assume that $a_r < a_s$. Then by the hypothesis, $\pi^{-1}(a_r) < \pi^{-1}(a_s)$ which implies that $(a_r - a_s)(\pi^{-1}(a_r) - \pi^{-1}(a_s)) > 0$. Hence $a_r a_s \notin E_{\pi}$.It is also true if $a_r > a_s$, $a_r a_s \notin E_{\pi}$. Therefore there is no edge among vertices of V_1 . Similarly it can be seen that there is no edge among vertices of V_2 and among vertices of $V_3.$ Hence G_π is a complete tripartite graph.

Lemma 2.6: Let π be a permutation on S= $\{a_1, a_2, ..., a_p\}$ where p is even such that $a_1 < a_2 < ... < a_p$ and $a'_{\frac{p}{2}+k+1} < a'_{\frac{p}{2}+k+2} < < a'_p$ $< a'_{\frac{p}{2}-(k-1)} < a'_{\frac{p}{2}-(k-2)} < ... < a'_{\frac{p}{2}} < a'_{\frac{p}{2}+1} < ... < a'_{\frac{p}{2}+k} < a'_1 < a'_2 < ... < a'_{\frac{p}{2}-k}$ where k =1,2,...,(p/2)-1. Then G_{π} is a complete tripartite graph. Proof: Let $V_{\pi} = \{a_1, a_2, ..., a_p\}$.Let $V_1 = \{a_1, a_2, ..., a_{\frac{p}{2}-k}\}$; $V_2 = \{a_{\frac{p}{2}-(k-1)}, ..., a_{\frac{p}{2}}, a_{\frac{p}{2}+1}, ..., a_{\frac{p}{2}+k}\}$ and $V_3 = \{a_{\frac{p}{2}+(k+1)}, a_{\frac{p}{2}+(k+2)}, ..., a_p\}$ where k = 1,2,3,...,(p/2)-1. Let $a_i \in V_1$ and $a_j \in V_2$. Then $a_i < a_j$. By hypothesis $a'_j < a'_i$. (i.e) $\pi^{-1}(a_j) < \pi^{-1}(a_j)$ which implies

 $(a_i - a_j)(\pi^{-1}(a_i) - \pi^{-1}(a_j)) < 0.$ Hence $a_i a_j \in E_{\pi}$, $\forall i = 1, 2, \dots, \frac{p}{2} - k$

and $j=\frac{p}{2}-(k-1),\dots,\frac{p}{2},\dots,\frac{p}{2}+k$ where $k = 1,2,3,\dots,(p/2)-1$. Hence every vertex of V_1 is adjacent to all the vertices of V_2 . Similarly it can be proved that every vertex of V_1 is adjacent to all the vertices of V_3 as well as between vertices of V_2 and V_3 . Now let us prove that there exists no edge among vertices of V₁. Let $a_r, a_r \in V_1$. Assume that $a_r < a_r$. Then by the hypothesis, $\pi^{-1}(a_r) < \pi^{-1}(a_r)$ which implies that $(a_r-a_r)(\pi^{-1}(a_r)-\pi^{-1}(a_r)) > 0$. Hence $a_ra_r \notin E_r$. It is also true if $a_r > a_{s_1}$, $a_r a_s \notin E_{\pi}$. Therefore there is no edge among vertices of V_1 . Similarly it can be seen that there is no edge among vertices of V_2 and among the vertices of V₃. Hence G_{π} is a complete tripartite graph. Remark 2.7: Let π be a permutation on S= $\{a_1, a_2, ..., a_p\}$ such that $a_1 < a_2 < \dots < a_n$. If π is expressed as a product of disjoint cycles such as $(a_1a_{i+k+1})(a_2a_{i+k+1})(a_3a_{i+k+2}) \dots (a_{i-k}a_p)$ where

 $i = \frac{p+1}{2} + 1, \ k = 1, 2, ..., \frac{p-1}{2}$ for odd p and $i = \frac{p+2}{2}, \ k = 1, 2, ..., \frac{p-2}{2}$

for even p, then G_{π} is a complete tripartite graph by Lemma 2.5 and Lemma 2.6.

Remark 2.8: The permutations following the pattern described in the Remark 2.7 always realizes a connected graph. Hence $1 \le \gamma(\pi) \le p/2$

Remark 2.9: The number of distinct permutations on p symbols yielding complete tripartite graphs is k = (p-1)/2 for odd p and k = (p-2)/2 for even p

Theorem 2.10: Let π be a permutation on $S = \{a_1, a_2, ..., a_p\}$ such that $a_1 < a_2 < ... < a_p$. If π is expressed as a product of disjoint cycles such as $(a_1a_{i+k})(a_2a_{i+k+1})(a_3a_{i+k+2}) \dots (a_{i-k}a_p)$ where $i = \frac{p+1}{2} + 1, k = 1, 2, ..., \frac{p-1}{2}$ for odd p and $i = \frac{p+2}{2}, k = 1, 2, ..., \frac{p-2}{2}$ for even p, then (i) $\gamma(\pi) = 1$ for k = 1 and odd p; (ii) $\gamma(\pi) = 1$ if $\pi = (a_1a_p)$; (iii) $\gamma(\pi) = 2$, otherwise.

Proof: Let π be a permutation on $S = \{a_1, a_2, ..., a_p\}$ such that $a_1 < a_2 < ... < a_p$. If π is expressed as a product of disjoint cycles such as $(a_1a_{i+k})(a_2a_{i+k+1})(a_3a_{i+k+2}) \dots (a_{i-k}a_p)$ where $i = \frac{p+1}{2} + 1$, $k = 1, 2, ..., \frac{p-1}{2}$ for odd p and $i = \frac{p+2}{2}$, $k = 1, 2, ..., \frac{p-2}{2}$ for even p, then π follows the pattern as described in Lemma 2.5 and Lemma 2.6 by the Remark 2.7. Hence (i) $\gamma(\pi) = 1$ for k = 1 and odd p; (ii) $\gamma(\pi) = 1$ if $\pi = (a_1a_p)$; (iii) $\gamma(\pi) = 2$, otherwise.

III.REALIZABLE PERMUTATION GRAPHS

Lemma 3.1:

Let π be a permutation on S= $\{a_1, a_2, \dots, a_p\}$ such that $a_1 < a_2 < \dots < a_p$. and let (A) $a'_i = a_{i-2}$ odd i, 1 < i < p, and $a'_j = a_{j+2}$, even j, $1 \le j < p-1$, $a'_1 = a_2$ and $a'_{p-1} = a_p$ for odd p and $a'_{p} = a_{p-1}$ for even p (or) (B) $a'_{i} = a_{p+2}$, odd i, 1 < p, and $a'_{j} = a_{j-2}$, even j, $2 < j \le p$, $a'_{2} = a_{1}$ and $a'_{p} = a_{p-1}$ for odd p and $a'_{p-1} = a_{p}$ for even p. Then G_{π} is a path with p vertices.

Proof:

(A) Given $a'_{i} = a_{i-2}$ odd i, 1 < i < p, and $a'_{j} = a_{j+2}$, even j, $1 \le j < p-1$, $a'_{1} = a_{2}$ and $a'_{p-1} = a_{p}$ for odd p and $a'_{p} = a_{p-1}$ for even p. Hence $\pi^{-1}(a_{2}) = a_{1}$; $\pi^{-1}(a_{j+2}) = a_{j}$; $1 \le j < p-1$; $\pi^{-1}(a_{p}) = a_{p-1}$ and $\pi^{-1}(a_{i-2}) = a_{i}$ odd i, 1 < i < p.

Case 1: Let m be odd.

Claim1: $a_m a_{m+1}, a_m a_{m+3} \in E_{\pi}$, $1 \leq m < p$. We know $a_m - a_{m+1} < 0$. $\pi^{-1}(a_m) = a_{m+2}$ and $\pi^{-1}(a_{m+1}) = a_{m-1}$. Therefore $\pi^{-1}(a_m) - \pi^{-1}(a_{m+1}) = a_{m+2} - a_{m-1} > 0$ and hence $(a_m - a_{m+1})(\pi^{-1}(a_m) - \pi^{-1}(a_{m+1})) < 0$. So $a_m a_{m+1} \in E_{\pi}$. Similarly $a_m - a_{m+3} < 0$ and $\pi^{-1}(a_m) - \pi^{-1}(a_{m+3}) = a_{m+2} - a_{m+1} > 0$. Hence $a_m a_{m+3} \in E_{\pi}$, $1 \leq m < p$.

Claim 2: $a_{m}a_{m+k} \notin E_{\pi}$ where k=4,5,6,...,p-m. Here $a_{m} - a_{m+k} < 0$, $\pi^{-1}(a_{m}) = a_{m+2}$ and $\pi^{-1}(a_{m+k}) = a_{m+k+2}$ for even k and $\pi^{-1}(a_{m+k}) = a_{m+k-2}$ for odd k. Therefore $(a_{m} - a_{m+k})(\pi^{-1}(a_{m}) - \pi^{-1}(a_{m+k})) < 0$. Hence $a_{m}a_{m+k} \notin E_{\pi}$ where k = 4,5,6,...,p-m.

Case 2: Let m be even.

m-1 and m-3 are odd and similar proof can be given to show that $a_m a_{m-1}, a_m a_{m-3} \in E_{\pi}$, $1 < m \le p - 1$ and $a_m a_{m+k} \notin E_{\pi}$ where 1 < m < p, k = 1, 2, 3, ..., p-m.

Case 3: Let us prove that $a_p a_{p-2} \in E_{\pi}$, and $a_p a_{p-i} \notin E_{\pi}$, where i = 1,3,4,...,p-1; $a_1 a_2 \in E_{\pi}$ and $a_2 a_n \notin E_{\pi}$ 1 < n \leq p. $a_p - a_{p-2} > 0$, $\pi^{-1}(a_p) - \pi^{-1}(a_{p-2}) = a_{p-1} - a_p < 0$. Therefore $\left(a_p - a_{p-2}\right)\left(\pi^{-1}(a_p) - \pi^{-1}(a_{p-2})\right) < 0$. Hence $a_p a_{p-2} \in E_{\pi}$. We know that $a_p - a_{p-i} > 0$, i = 1,3,4,...,p-1. $\pi^{-1}(a_p) - \pi^{-1}(a_{p-i}) = a_{p-1} - a_{p-k} > 0$, k=2,3,...,p-1. Hence $a_p a_{p-i} \notin E_{\pi}$, i=1,3,4,...,p-1. Similarly it can be proved that $a_1 a_2 \in E_{\pi}$ and $a_2 a_n \notin E_{\pi}$. Hence the permutation π given by $a'_i = a_{p-2}$ odd i, 1 < i < p, and $a'_j = a_{j+2}$, even j, $1 \leq j < p-1$, $a'_1 = a_2$ and $a'_{p-1} = a_p$ for odd p and $a'_p = a_{p-1}$ for even p realizes a path $P_{p_1} = \{a_2, a_1, a_4, a_3, \dots a_p, a_{p-2}\}$. By the same argument as above it can be proved that π realizes the path $P_{p_1} = \{a_2, a_1, a_4, a_3, \dots a_p, a_{p-1}\}$ for even p.

(B) Similar proof can be set for the pattern given by π $a'_i = a_{i+2}$, odd i, $1 \le i < p$, and $a'_j = a_{j-2}$, even j, $2 < j \le p$, $a'_2 = a_1$ and $a'_p = a_{p-1}$ for odd p and $a'_{p-1} = a_p$ for even p. This pattern realizes the path $P_{p_1} = \{a_1, a_3, a_2, a_5, \dots, a_p, a_{p-1}\}$ for odd p and $P_{p_1} = \{a_1, a_3, a_2, a_5, \dots, a_{p-1}, a_{p-2}, a_p\}$ for even p.

Theorem 3.2: Let π be a permutation on $S = \{a_1, a_2, ..., a_p\}$ such that $a_1 < a_2 < ... < a_p$ and let (A) $a'_i = a_{i-2}$ odd i, 1 < i < p, and $a'_j = a_{j+2}$, even j, $1 \le j < p-1$, $a'_1 = a_2$ and $a'_{p-1} = a_p$ for odd p and $a'_{p} = a_{p-1}$ for even p (or) (B) $a'_{i} = a_{i+2}$, odd i, $1 \le i < p$, and $a'_{j} = a_{j-2}$, even j, $2 < j \le p$, $a'_{2} = a_{1}$ and $a'_{p} = a_{p-1}$ for odd p and $a'_{p-1} = a_{p}$ for even p. Then $\gamma(\pi) = \lceil p/3 \rceil$.

Proof: Let π be a permutation on S= $\{a_1, a_2, ..., a_p\}$ such that $a_1 < a_2 < ... < a_p$. and let (A) $a'_i = a_{i-2}$ odd i, 1 < i < p, and $a'_j = a_{j+2}$, even j, $1 \le j < p-1$, $a'_1 = a_2$ and $a'_{p-1} = a_p$ for odd p and $a'_p = a_{p-1}$ for even p (or) (B) $a'_i = a_{i+2}$, odd i, $1 \le i < p$, and $a'_j = a_{j-2}$, even j, $2 < j \le p$, $a'_2 = a_1$ and $a'_p = a_{p-1}$ for odd p and $a'_{p-1} = a_p$ for even p. Then by Lemma 3, G_{π} is a path with p vertices and hence $\gamma(\pi) = \lceil p/3 \rceil$.

Theorem 3.3: C_n , is not a permutation graph for any $n \ge 5$ Proof: When n = 3, according to Lemma 2.1 C_3 is a permutation graph. When n = 4 then by Lemma 2.3, C_4 is also a permutation graph. The permutations mentioned in the above theorem realize the path with p vertices. The vertices a_2 and a_p are adjacent to exactly one vertex each and other vertices are of degree 2 in case A and the vertices a_1 and a_{p-1} are adjacent to exactly one vertex each and other vertices are of degree 2 in case B. Therefore if a permutation has to realize a cycle, then the vertices a_2 and a_p in Case A, or a_1 and a_{p-1} in Case B must be of degree two along with the other vertices with degree two, which is not possible by the above theorem. Hence C_n , $n \ge 5$ are not permutation graphs.

REFERENCES

- Peter Keevosh, Po-Shen Loh and Benny Sudakov, "Bounding the number of edges in a Permutation Graph", The electronic Journal of Combinatorics 13, pp 1-9, 2006.
- [2] R.Adin and Y.Roichman, On Degrees in the Hasse Diagram of the Strong Bruhat Order, Seminaire Lotharingien d Combinatoire 53 (2006), B53g.
- [3] Charles J. Colbourn, Lorna K.Stewart "Permutation Graphs: Connected Domination and Steiner Trees", Research Report CS-85-02, Canada, 1985.
- [4] Frank Harary, Graph Theory, Narosa Publishing House, Calcutta, pp. 2001.
- [5] Teresa W.Haynes, Stephen T. Hedetneimi, PeterJ.Slater, Fundamentals of Domination in Graphs, in Graphs, Marcel Dekker, INC., New York, pp.1-106, 1998.
- [6] Ryuhei Uehara, Gabriel Valiente, Linear structure of Bipartite Permutation Graphs and the Longest Path Problem, 2006.